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Abstract

The potential for competitive inhibition to limit the growth of microbial pathogens in food raises questions about the external

validity of typical predictive microbiology studies and suggests the need to consider microbial community dynamics in food

safety risk assessment. Ecological theory indicates, however, that community dynamics are highly complex and may be very

sensitive to initial conditions and random variation. Seemingly incongruous empirical results for Escherichia coli O157:H7 in

ground beef are shown to be consistent with a simple theoretical model of interspecific competition. A potential means of

incorporating community-level microbial dynamics into the food safety risk assessment process is explored.
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1. Introduction cerns remain about the external validity of predictive
Predictive microbiology has made significant con-

tributions to food safety risk assessment and risk

management (McMeekin et al., 1997). Like the results

of other experimental studies, however, nagging con-
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microbiology models for drawing inferences about

real world exposures to microbial pathogens in food.

Typically, such models have been developed on the

basis of monospecific cultures grown in an artificial

matrix under static abiotic environmental conditions.

Predictive microbiological models typically have

failed to account for non-steady-state environmental

conditions and diversity in the physiologic status of

microorganisms and pretreatment storage conditions

(McMeekin et al., 1997). Furthermore, pathogen

growth rates and maximum densities are thought to

be a function of the total microbial community com-

position and density in the food due to competition for

nutrients, the production of inhibitory substances, and

overall density. Thus, the potential for spoilage and
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other normal food microflora to competitively inhibit

the growth of pathogens also raises questions about

the validity of monospecific culture experimental

results with respect to growth rates, maximum pop-

ulation density (MPD), and other aspects of pathogen

population dynamics in naturally contaminated food

products. Competitive inhibition of foodborne patho-

gens has been demonstrated for Salmonella, where the

suppression of growth of all microorganisms occurred

when the total microbial population density achieved

the upper limit characteristic of the growth matrix

(Jameson, 1962). This effect has also been reported

for Staphylococcus aureus, Listeria monocytogenes,

Yersinia enterocolitica, Bacillius cereus, Salmonella

infantis, and Carnobacterium spp. (Buchanan and

Bagi, 1997; Duffes et al., 1999; Grau and Vander-

linde, 1992; Mattila-Sandholm and Skytta, 1991;

Nilsson et al., 1999; Ross and McMeekin, 1991).

The observed dynamics of mixed microbial popula-

tions can be highly complex, however. Buchanan and

Bagi (1999) demonstrated, for example, that L. mono-

cytogenes grown in co-culture with Pseudomonas

fluorescens can attain maximum population densities

that are lower, higher, or the same compared to levels

of the pathogen monoculture, depending on the tem-

perature, acidity, and availability of water in the

surrounding environment. Such results indicate that

fully considering the complexity of microbial com-

munity dynamics would require detailed knowledge

of the food, its microbial composition and inoculum

levels, the factors affecting competitive interactions,

and how the food is handled during transportation,

storage, distribution, and use.

Undoubtedly, predictive microbiological models

based on multi-species trials would present a more

realistic picture of microbial community dynamics in

food products. As a practical matter, however, an

experimental program that evaluates all possible

combinations of abiotic and biotic environmental

conditions would be prohibitively costly and time-

consuming. There are also practical limits on the

successful identification and enumeration of target

organisms and their competitors given currently

available microbiological selective culture methods.

Therefore, great care in experimental design will be

needed to ensure that the value of information

provided by community-level studies warrants the

time and resources allocated to them. From an
experimental perspective, judicious use of theoretical

ecology models has the potential to inform efficient

community-level study design by helping to identify

important regions in the experimental design space

(e.g., the growth/no-growth interface). Furthermore,

theoretical modeling can help to construct general

explanations for specific observed results. This appli-

cation of theoretical modeling can be particularly

useful when results are unexpected. Therefore—as a

practical matter—the insights gained from theoretical

ecology may help to avert potentially unproductive

disagreements arising from seemingly contradictory

empirical results.

One apparent contradiction arises from the intui-

tive notion that ubiquitous natural spoilage flora

(e.g., Pseudomonas species) will inevitably outcom-

pete and eventually exclude comparatively rare

pathogens in food products. Responses observed

under experimental conditions vary considerably,

however (e.g., Buchanan and Bagi, 1999). Further,

theoretical ecology indicates that the course of com-

petitive interactions between microorganisms may be

substantially altered or even reversed due to variation

among strains or environmental conditions or as a

consequence of chance events, such as differences in

initial concentrations between pathogens and other

microflora within the food substrate. This paper

first illustrates the consistency of seemingly incon-

gruous results from predictive microbiological

experiments with a simple model of interspecific

competition, using Escherichia coli O157:H7 in

ground beef as an illustrative example. We then

explore how community-level microbial dynamics

could be incorporated into the food safety risk assess-

ment process.

1.1. Predictive microbiology for E. coli O157:H7

Predictive microbiology models have been devel-

oped for E. coli O157:H7 under a variety of

environmental conditions. These models predict

the growth and decline of E. coli O157:H7 given

environmental parameters including time, temper-

ature, pH, and salinity. One set of equations was

developed by Buchanan and Bagi (1994) based on

studies of monospecific cultures grown in brain

heart infusion broth. This set of equations was later

incorporated into the Pathogen Modeling Program
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(PMP) available from the US Department of Agri-

culture, Agricultural Research Service (ARS). Based

on the ARS data, Marks et al. (1998) calculated the

maximum population density (e.g., the observed

maximum number of E. coli O157:H7 colony-form-

ing units per gram (cfu/g)) as a function of the

theoretical maximum density (TMD) and temper-

ature. Marks et al. (1998) estimated the TMD of E.

coli O157:H7 at refrigeration temperatures to be

about 10 log (1010 cfu/g).

Walls and Scott (1996) compared predictions from

the PMP with observations of E. coli O157:H7 growth

in ground beef with natural flora and concluded that

the PMP ‘‘offers reasonably good predictions of

growth in raw ground beef’’. In particular, Walls

and Scott (1996) demonstrated growth in ground beef

up to approximately 10 log. (Note that the figures in

Walls and Scott (1996) present the average levels for

the experimental replicates.) How is it possible that

the MPD of E. coli O157:H7 co-cultured with the

natural ground beef flora could approach the theoret-

ical maximum? Initially, the experimental results for

E. coli O157:H7 cultured in raw ground beef appear to

contradict those reported for Salmonella, Listeria, and

other pathogens co-cultured with natural foodborne

microflora. These seemingly paradoxical experimental

results are consistent, however, with the complex

range of outcomes predicted by a simple model of

interspecific competition.
2. Methods

2.1. Lotka–Volterra competition model

The Lotka–Volterra competition model provides a

basic model for the population growth of two inter-

acting species (Brown and Rothery, 1993). The

approach is an extension of the logistic model for

population growth of a single species limited by a

maximum carrying capacity characteristic of a partic-

ular habitat. The monospecific logistic growth model

describes a limited population growth rate that

decreases linearly with population density due intra-

specific competition. This basic approach is extended

to account for competition between species by incor-

porating an additional reduction in the population

growth rate which is proportional to the population
density of another species. The Lotka–Volterra model

for two-species competition can be expressed as

follows:

dN1

dt
¼ r1N1 1� N1 þ a12N2

TMD1

� �
;

dN2

dt
¼ r2N2 1� N2 þ a21N1

TMD2

� �
ð1Þ

where N1 and N2 are the population densities of

species 1 and 2, r1 and r2 are the intrinsic (unlimited)

growth rates, TMD1 and TMD2 are the theoretically

maximum population densities under monospecific

growth conditions, and a12 and a21 are the interspe-

cific competition coefficients, where aij refers to the

competitive effect on species i by species j.

Dens et al. (1999) extends the basic Lotka–Vol-

terra model to account for a lag phase prior to the

onset of exponential growth:

dN1

dt
¼ r1N1

Q1

1þ Q1

1� N1 þ a12N2

TMD1

� �
;

dN2

dt
¼ r2N2

Q2

1þ Q2

1� N2 þ a21N1

TMD2

� �
;

dQi

dt
¼ riQi ð2Þ

where Qi, which represents the physiological state of

the cells, grows exponentially and allows for descrip-

tion of the lag phase. Note that as aij! 0, Eq. (2)

reduces to the conventional single species growth

model presented by Baranyi and Roberts (1994).

Further, as Qi!l, Eq. (2) reduces to Eq. (1), and

as both Qi!l and aij! 0, Eq. (2) reduces to the

simple logistic growth model.

Lachowicz et al. (1995) provides an example of the

successful application of the basic Lotka–Volterra

competition model to describe the community dynam-

ics of two Shigella flexneri strains (S. flexneri 3b, a

mutant strain that carries a prophage lethal for the

original strain, S. flexneri 1b) grown in co-culture. In

particular, Lachowicz et al. (1995) found that analysis

of serial cultivations suggests that empirical estimates

of the Lotka–Volterra equation parameters are real-

izations (observed values) of random variables char-

acterizing strains and media. This finding is

noteworthy in that it introduces the key concept that
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the microbial community dynamics are probabilis-

tic—not deterministic, as implied by Eqs. (1) and

(2). The implications of this additional layer of com-

plexity become apparent in Results.

2.2. Competition scenario simulation

As a complement to fitting the Lotka–Volterra

competition model to experimental data, population

density time series can be simulated for scenarios

consisting of specified values of the model parameters

and initial population densities. For illustrative purpo-

ses, consider a simple, two-species microbial com-

munity consisting of a pathogen (species 1) and a

spoilage organism (species 2). The basic Lotka–Vol-

terra model (Eq. (1)) is used (i.e., lag phase dynamics

are ignored). Table 1 summarizes the Lotka–Volterra

competition model parameters for the scenarios con-

sidered in this paper.

Scenarios 1–3 assume that the intrinsic growth rate

of both species 1 and 2 is equivalent to a 3-h gen-

eration (doubling) time (i.e., r1 = r2 = 0.23). By com-

parison, Walls and Scott (1996) reported generation

times of 0.4–6.0 h for E. coli O157:H7 under various

experimental growth conditions (12–35 jC, pH 5.7–

6.4). Scenarios 1–3 also assume that the TMD of both

species in ground beef is 1010 cfu/g (i.e., TMD1 =

TMD2= 10 log), and that the competitive effect of the

spoilage organism on the pathogen is twice that of the

pathogen’s effect on the spoilage organism (i.e.,

a12 = 2; a21 = 1).
Scenarios 1–3 differ only with respect to the initial

densities of the pathogen. In Scenario 1, the initial

densities of the pathogen and spoilage organism (N10

and N20, respectively) are both set at 102 cfu/g. In

Scenarios 2 and 3, the initial spoilage organism

density is held constant at N20 = 10
2 cfu/g while the
Table 1

Competition model parameters

Scenario N10 (log cfu/g) N20 (log cfu/g) r1 r

1 2 2 0.23 0

2 3 2 0.23 0

3 4 2 0.23 0

4—N20 changed 2 2.8� 106 0.23 0

4—r2 changed 2 2 0.23 0

4—a12 changed 2 2 0.23 0

5 2 2 f uniform(0.23
initial pathogen density (N10) is increased to 103 and

104 cfu/g, respectively. By comparison, Walls and

Scott (1996) inoculated their ground beef with 103–

104 cfu/g of E. coli O157:H7.

For a given scenario, we can evaluate what

changes in a single competition model parameter

would be required to achieve a specified outcome

by holding all other factors constant and solving

numerically for the remaining model parameter. For

example, in Scenario 4, we seek to identify conditions

that inhibit pathogen population growth such that the

maximum density achieved (MPD1) is 105 cfu/g.

Scenario 4 assumes a base case as follows: r1 = r2 =

0.23 (3-h generation times); TMD1 = TMD2= 10 log;

a12 = 2, a21 = 1; and N10 =N20 = 10
2 cfu/g. While hold-

ing other factors constant, each competition model

parameter is varied until MPD1 = 10
5 cfu/g. Numerical

solutions were performed using Microsoftn Excelk
(’97) loaded with the Solver add-in tool.

Scenarios 1–4 illustrate the effects of varying

individual model input values on complex microbial

community dynamics. This is the simple, determinis-

tic form of the competition model (i.e., stochastic

variation in growth rates and other model parameters

has been ignored). Next, we consider the effect of

varying the growth rates stochastically while holding

other factors constant. Scenario 5 assumes that the

growth rates of both species (r1 and r2) vary between

1- and 3-h generation times, depending upon environ-

mental conditions (i.e., rif uniform(0.23,0.68)). Sce-

nario 5 further assumes that due to similar responses

to temperature and other factors, r1 and r2 are highly,

but not perfectly correlated (i.e., the linear correlation

(r2) between the growth rates is 90%). As in Scenario

1, let TMD1 =TMD2 = 10 log; a12 = 2 and a21 = 1; and
N10 =N20 = 10

2 cfu/g. By employing Monte Carlo

simulation methods (Vose, 2000), we can estimate
2 r2 (r1r2) a12 a21 TMD (log cfu/g)

.23 – 2 1 10

.23 – 2 1 10

.23 – 2 1 10

.23 – 2 1 TMD=10, MPD1 = 5

.68 – 2 1 TMD=10, MPD1 = 5

.23 – 4.3� 104 1 TMD=10, MPD1 = 5

,0.68) 0.90 2 1 10



Fig. 1. Competition model with initial concentrations:

N10 =N20 = 1e + 2.
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the relative frequency of different competitive out-

comes. Monte Carlo simulation procedures were per-

formed with Latin Hypercube sampling (10,000

iterations) using Palisadesn @Riskk (Ver. 3.5.2), an

add-on to Microsoftn Excelk (’97).

2.3. Integrating the competition model into risk

assessment

Next, we explore how community-level microbial

dynamics could be integrated into the food safety risk

assessment process. For illustrative purposes, we do

so by inserting the simple Lotka–Volterra competition

model into a process risk model for E. coli O157:H7

at the point of ground beef fabrication. We then

proceed to expand on the previous scenarios and carry

them forward to the risk assessment endpoints of

ingested dose and the probability of human illness.

Assuming the pathogen (species 1) to be E. coli

O157:H7, consider again Scenarios 1–3, which differ

only with respect to the initial concentration of the

pathogen. Assume that 48 h of microbial community

growth occurs prior to cooking. (The duration of

conditions permitting growth need not be continuous,

and we assume no net growth or mortality during no-

growth conditions.) Assume further that cooking

results in a 6-log reduction in microbial levels and

that consumption consists of a 100 g serving (i.e., the

ingested dose is 2 log higher than post-cooking

density, which is expressed on a per gram basis).

In order to simulate the probability of illness from

an ingested dose of E. coli O157:H7, a suitable dose–

response function is required. For illustrative purpo-

ses, we employ a dose–response relationship for E.

coli O157:H7 presented by Powell et al. (2000),

which consists of the following beta-Poisson model:

p ¼ 1� 1þ d

b

� ��a

ð3Þ

where p is the probability of illness, d is the average

administered dose, a = 0.221, and b = 8722.48. As

indicated by Powell et al. (2000), however, this curve

only represents a provisional estimate of the most

likely value (MLV) of the dose–response function for

E. coli O157:H7 within a broad range of uncertainty

about the true dose–response function. (See Food

Safety and Inspection Service (2001) for an alternative
most likely value of the dose–response function for

E. coli O157:H7.)
3. Results

3.1. Competition scenario simulation

The dynamics of simulation Scenarios 1–3 are

presented in Figs. 1–3, respectively. The results

illustrate how the competitive interaction simulation

depends on the initial concentrations of the micro-

organisms. Note that Scenarios 1 and 2 (Figs. 1 and

2) reach the same competitive outcome—eventual

exclusion of the pathogen by the spoilage organ-

ism—but they differ in the path taken. In Scenario 1

(Fig. 1), the maximum pathogen density achieved is

reduced an order of magnitude below its theoretical

potential. In Scenario 2 (Fig. 2), however, the

pathogen density virtually achieves the TMD before

being overtaken by the spoilage organism. (Similarly,

Dens et al. (1999) demonstrated how consideration

of lag phase dynamics (Eq. (2)) may result in the

same competitive outcome as that predicted by the

basic Lotka–Volterra model (Eq. (1)) but by means

of a different course with respect to time.) In con-

trast, Scenario 3 (Fig. 3) results in a qualitatively

different competitive outcome—coexistence charac-

terized by dominance of the spoilage organism by

the pathogen throughout the modeled time series.



Fig. 2. Competition model with initial concentrations: N10 = 1e + 3;

N20 = 1e + 2.
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For Scenario 4, if while holding other factors

constant, N20 is increased to 2.8� 106, then MPD1

is held to 105 cfu/g. Alternatively, if r2 is increased to

0.68 (effectively reducing the generation time for the

spoilage organisms to 1 h) while holding other factors

constant, then MPD1 is similarly inhibited. Also, if a12
is increased to 4.3� 104 while holding other factors

constant, then MPD1 is held to 105 cfu/g (see Table 1)

Thus under this scenario, limiting the maximum

pathogen density to 5 log is more sensitive to changes

in the spoilage organism growth rate than to changes

in either the spoilage organism’s initial density or the

competitive effect of the spoilage organism on the

pathogen. Note that with respect to the growth rate
Fig. 3. Competition model with initial concentrations: N10 = 1e + 4;

N20 = 1e + 2.
solution, the simulation indicates that the spoilage

organism experiences a 1-h generation time under

the same environmental conditions at which the

pathogen grows at a 3-h generation time.

Under Scenario 5, the growth rates (r1 and r2) vary

stochastically in a correlated fashion. Monte Carlo

simulation results of Scenario 5 indicate that although

the likelihood that the spoilage organism eventually

excludes the pathogen is estimated to be 99%, the

likelihood that the maximum pathogen density

(MPD1) achieved during the time series exceeds 109

cfu/g is estimated to be 80%.

3.2. Integrating the competition model into risk

assessment

Table 2 summarizes the hypothetical risk estimates

resulting from integrating the simple Lotka–Volterra

competition model into the process risk model for

E. coli O157:H7 under the scenario simulations. By

simulating Scenarios 1–3 from the initial contamina-

tion levels of raw ground beef through the dose–

response relationship (Eq. (3)), we can evaluate the

impact of varying just the initial pathogen concen-

tration on the selected risk assessment endpoints. For

Scenario 1 (N10 =N20 = 102 cfu/g), the simulated

ingested dose of E. coli O157:H7 at 48 h is 2.2 log

cfu, and the estimated probability of illness is 0.004.

For Scenario 2 (N10 = 10
3 cfu/g and N20 = 10

2 cfu/g),

the simulated ingested dose of E. coli O157:H7 at 48 h

is 3.2 log cfu, and the estimated probability of illness

is 0.04. For Scenario 3 (N10 = 10
4 cfu/g and N20 = 10

2

cfu/g), the simulated ingested dose of E. coli O157:H7

at 48 h is 4.2 log cfu, and the estimated probability of

illness is 0.21. Under this simple set of scenarios, a 2-

log increase in N10 increases the probability of illness
Table 2

Hypothetical risk estimates

Scenario Ingested dose

(log cfu) at 48 h

Probability

of illness

1 2.2 0.004

2 3.2 0.04

3 4.2 0.21

4 min = 0.0,

max = 0.7

min = 0,

max = 0.0001

5 median = 4.2,

95% CI = 2.1–5.8

median = 0.2,

95% CI = 0.003–0.62
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by a factor of approximately 50 (less than two orders

of magnitude).

For Scenario 4, in which MPD1 is limited to 5 log

by varying one competition model parameter at a

time, the simulated probability of illness ranges from

0 (for a12 = 4.3� 104, the pathogen is completely

excluded prior to 48 h of microbial community

growth) to 1�10� 4 (for N20 = 2.8� 106, the ingested

dose at 48 h is reduced to 0.7 log). This scenario

underscores the importance not only of a particular

competitive outcome (e.g., MPD1 is limited to 5 log)

but also the dependency of public health outcomes to

the path taken in community-level dynamics.

The simulated dynamics become considerably

more complex for Scenario 5, in which r1 and r2 vary

stochastically between 1- and 3-h generation times

(with 90% correlation between the growth rates).

Even in this simple case where the remaining com-

petition model parameters are fixed at their values

under Scenario 1, the influence of stochastic growth

rates on the community-level dynamics is reflected in

the broad spread in the distributions for the risk

assessment model outputs. Using Monte Carlo simu-

lation methods to assess this scenario, the ingested

dose of E. coli O157:H7 at 48 h has a median value of

4.2 log cfu (with a 95% credible interval (CI) of 2.1–

5.8 log cfu), and the probability of illness has a

median value of 0.20 (with a 95% CI of 0.003–

0.62). (The 95% CI is the span between the 2.5th

percentile and the 97.5th percentile of the Monte

Carlo simulation output distribution.) Note that this

two-order-of-magnitude span in the 95% CI for the

probability of illness is obtained while varying only

the microbial growth rates in the simulation. Consider,

for example, that under Scenario 5, the duration of

community growth is fixed at 48 h. In reality, how-

ever, time for growth is also variable and uncertain.

While the preceding scenario is hypothetical, it

suggests that integrating complex microbial commun-

ity dynamics into risk assessment can result in a large

degree of variability and uncertainty. In the absence of

ideal data from comprehensive, community-level pre-

dictive microbiological studies, food safety risk

assessment can proceed nonetheless by characterizing

the uncertainty about pathogen population growth

dynamics under natural conditions based on a provi-

sional understanding informed by available empirical

data and ecological theory. Sensitivity analysis can
then be performed to assess the importance of this

uncertainty relative to other factors on the overall

uncertainty in risk assessment endpoints.

Because the maximum growth of E. coli O157:H7

possible in ground beef depends on the variable and

uncertain population of all microbes in the ground

beef, it follows that the maximum population density

is both variable and uncertain. One approach to

modeling this variability and uncertainty in the

absence of ideal data is presented by the draft risk

assessment of E. coli O157:H7 in ground beef (Food

Safety and Inspection Service, 2001), where a trian-

gular distribution is used to model the variability in

maximum pathogen density. The minimum is assumed

to be 5 log, the maximum is assumed to be 10 log, and

the most likely value is uncertain but can range

uniformly from 5 to 10 log. In sensitivity analysis

of the draft risk assessment model, the uncertainty

related to the maximum potential population density

was highly correlated with the uncertainty distribu-

tion for the density of E. coli O157:H7 in consumed

servings.
4. Discussion

This paper presents a highly simplified model of

complex microbial community dynamics. In order to

gain additional insights into competitive interactions

for experimental design or other purposes, the basic

Lotka–Volterra competition model can be augmented

in various ways for greater realism and generalizabil-

ity. For example, one could also explore the influence

of allowing the Lotka–Volterra model parameters and

initial densities to vary jointly and stochastically as a

function of environmental conditions and/or in den-

sity- or sequence-dependent fashion. Growth rates

may be modeled as dependent on temperature, salin-

ity, and pH. If control over the production and release

of bacteriocins or other inhibitory substances by

benign microorganisms that compete with pathogens

is dependent on quorum sensing, then the competition

model can be extended to describe such density-

dependent dynamics. Similarly, Dens et al. (1999)

discuss the potential to extend their model (Eq. (2))

to include effects such as the influence of competitors

on lag phase duration and spatially heterogeneous

food products. Circumstances also may arise in which
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the contamination events for different organisms in a

food product are likely to be sequential rather than

concurrent due to different sources of contamination

(e.g., enteric or environmental). Sequence dependency

may confer what economists term ‘‘first mover

advantage’’ in analyzing competition among business

firms (Porter, 1990). Auger (1993) provides an exam-

ple from the ecological literature of the influence of

varying activity sequence on competitive outcomes

(e.g., a shift from strong competition with one species

in extinction towards weak competition with two co-

existing species). Further, the basic two-species com-

petition model can be generalized to account for any

number of co-occurring populations and for a variety

of interspecific interactions (e.g., parasitism and pre-

dation). Systems modeling approaches are generally

used to account for complex ecological community

dynamics. Bartell et al. (1992) provide some useful

background on the integration of community-level

interactions and effects into quantitative ecological

risk assessment modeling.

Ecological theory suggests a wide ranging contin-

uum of microbial community dynamics are possible.

Specifically, it suggests that the path and outcome of

competitive interactions may be highly sensitive to

initial conditions and random variation in key factors

such as growth rates and interspecific competition

coefficients. Initially, experimental results of E. coli

O157:H7 cultured in naturally contaminated ground

beef appear incongruous with previous reports of

pathogen inhibition by natural food microflora. These

results are consistent with a simple competition

model, however. Deviations from previous empirical

food microbiology results do not necessarily imply

that a study is defective but more likely that any

particular study or group of studies provides an

incomplete picture of the complex microbial ecology

of foods. In general, the effects of competition

observed in experimental and observational research

may depend on the timing of the observations. For

example, the effect of competition may be obscured if

samples are drawn before the onset of inhibition, or

peak levels of a microbial population may not be

observed if samples are drawn after the onset of

inhibition. Therefore, the full manifestation of com-

petition is not obvious to the cross-sectional observer.

From a risk management perspective, it may or

may not be possible or prudent to postpone food
safety decisions until the results of comprehensive,

community-level predictive microbiological studies

are available. While this determination must be in-

formed by science, it is ultimately a judgment call that

depends on the context of the food safety decision and

the distribution of risks, costs, and benefits associated

with taking or delaying a decision. Contrary to con-

ventional wisdom, we must keep in mind that new

science may increase rather than reduce uncertainty

about public health risks (Putnam and Graham, 1993).

In particular, the sensitivity of the competition model

to initial conditions is a distinguishing characteristic

of chaotic systems and raises the possibility of irre-

ducible uncertainty regarding the effect of microbial

community dynamics in assessing the public health

risks of foodborne pathogens. Findings such as the

importance of the uncertainty about maximum pop-

ulation densities relative to the uncertainty regarding

ingested doses of E. coli O157:H7 in ground beef

suggest, however, a potential payoff to further re-

search on microbial community-level dynamics in

foods. The integration of well-designed experimental

and surveillance studies, empirical data analysis, and

modeling may fail to eliminate uncertainty but holds

out the promise of providing food safety risk

managers with effective strategies for coping with

chaos.
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